Satellite Measurements of Passive Fluorescence and Comparisons with Field Data

Mark Abbott, Ricardo Letelier, and Jasmine Nahorniak
College of Oceanic and Atmospheric Sciences
Oregon State University

Context

- How do ecosystems respond to and affect global environmental change and the carbon cycle?
- Ocean carbon cycle models need to resolve more processes and structures
 - Changes in ecosystem structure/composition
 - Changes in physical processes
 - Interaction of ecology and physics
- Particular focus on coastal zones as part of GLOBEC project

Satellite-based Estimates of Primary Productivity

<u>Study</u>	<u>50°-90° 5</u>
Longhurst et al. (1995)	4 Pg C/yr
Behrenfeld and Falkowski (1997) corrected by Arrigo et al.	4.8
Antoine et al. (1996)	5.9
Arrigo et al. (1998)	3.2 - 4.4
Moore and Abbott (in press) - SeaWiFS	2.9

Light Harvesting and Fluorescence

MODIS Chlorophyll, 5-7 April 2000

MODIS FLH, 5-7 April 2000

8-Day SeaWiFS (6 April)

MODIS Chl., Gulf Stream, 5 April

MODIS FLH, Gulf Stream, 5 April

MODIS Chl., Gulf Stream, 6 April

MODIS FLH, Gulf Stream, 6 April

MODIS Chl., Gulf Stream, 7 April

MODIS FLH, Gulf Stream, 7 April

SeaWiFS April 2000

Fluorescence and Productivity

```
• F = [chl] \times (PAR \times a^*) \times \Phi_F
  where F = fluorescence
             [chl] = chlorophyll concentration
            PAR = photosynthetically available
                    radiation
            a* = chlorophyll specific absorption
            \phi_F = fluorescence quantum yield

    We can rearrange as F/[chl] to estimate φ<sub>F</sub>
```

In Situ Observations of F/[chl]

SST: 2000214.1920

Comparison of Ship and MODIS SST

41° N

 $mg m^{-3}$ 0.5 Longitude

Comparison of Ship and MODIS Chlorophyll

Chlorophyll Imagery from the Oregon Coast

MODIS

SeaWiFS

MODIS Fluorescence Observations

Fluorescence Line Height, baseline adjusted

Drifters vs. MODIS Observations of FLH

FLH vs. Chlorophyll as Function of SST

FLH/chl vs. F_v/F_m as Function of SST

Photosynthetic/Photoprotective Pigments

Key Points

- General patterns of FLH/[chl]
 - Low FLH/[chl] in upwelling centers, Columbia River plume, high FLH/[chl] offshore
- General patterns of photosynthetic potential
 - High F_V/F_M in freshly upwelled waters, Columbia River plume, low F_V/F_M offshore
- But significant deviations from simple relationship between FLH/[chl] and F_v/F_m
 - Freshly upwelled waters, ratio of photoprotective pigments to photosynthetic pigments
- Quantifying these relationships and relating them to photosynthetic potential will require more work
 - Time history, regional dependence, etc.

Ratio of Morning/Afternoon ϕ_F

Nitrate starvation, low light

Nitrate addition, low light

Nitrate starvation, high light

How Can the Fluorescence Signal be Used?

- Field measurements show useful signal
- · Chemostat studies of phytoplankton response
 - Can detect signal when shifting from nutrientreplete to nutrient-starved (and vice versa) under low-light conditions
 - Weak signal under high-light conditions
 - More complicated metrics do show signal
 - Much work remains for other species and other environmental conditions
- Challenge is to understand relationship between F/[chl] and photosynthetic potential
 - Time and space scales
 - Single measurements will likely not work

Conclusions

- Estimates of productivity on mesoscales essential for studies of ocean processes
- FLH can be detected from space, even at relatively low chlorophyll concentrations
- Variations in FLH/[chl] are related to changes in phytoplankton processes and photosynthetic potential
- Research required to turn qualitative relationships of FLH and productivity into quantitative models
- Launch of EOS-Aqua and other satellites (ENVISAT, ADEOS-2) will help

Acknowledgments

- Captain and crew of R/V Wecoma
- Jack Barth, chief scientist
- Chris Wingard, Rachel Sanders and Cidney Howard (OSU) for field sampling
- Bob Evans and Miami team for MODIS data
- SeaWiFS data from MBARI HRPT and processed by Ocean Optics group (R. Zaneveld, S. Pegau, OSU)

Real-time MODIS Data

550nm/470 nm MODIS 500m Resolution

